NVIDIA GeForce MX550 vs NVIDIA GeForce RTX 2050 Mobile
Результат сравнения видеокарт
Ниже приведены результаты сравнения видеокарт NVIDIA GeForce MX550 и NVIDIA GeForce RTX 2050 Mobile по ключевым характеристикам производительности, а также энергопотреблению и многому другому.
Преимущества
- Новее Дата выпуска: January 2022 (January 2022 vs December 2021)
- Выше Boost Частота: 1477MHz (1320MHz vs 1477MHz)
- Больше Объем памяти: 4GB (2GB vs 4GB)
- Выше Пропускная способность: 112.0 GB/s (96.00 GB/s vs 112.0 GB/s)
- Больше Блоки шейдинга: 2048 (1024 vs 2048)
Общая информация
NVIDIA
Производитель
NVIDIA
January 2022
Дата выпуска
December 2021
Mobile
Платформа
Mobile
GeForce MX550
Название модели
GeForce RTX 2050 Mobile
GeForce MX
Поколение
GeForce 20 Mobile
1065MHz
Базоввая частота
1185MHz
1320MHz
Boost Частота
1477MHz
PCIe 4.0 x8
Интерфейс шины
PCIe 3.0 x8
4,700 million
Транзисторы
Unknown
-
RT ядра
32
-
Tensor ядра
?
Тензорные ядра — это специализированные процессоры, разработанные специально для глубокого обучения, обеспечивающие более высокую производительность обучения и вывода по сравнению с обучением FP32. Они позволяют выполнять быстрые вычисления в таких областях, как компьютерное зрение, обработка естественного языка, распознавание речи, преобразование текста в речь и персонализированные рекомендации. Два наиболее заметных применения тензорных ядер — это DLSS (Deep Learning Super Sampling) и AI Denoiser для снижения шума.
64
32
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
64
TSMC
Производитель
Samsung
12 nm
Размер процесса
8 nm
Turing
Архитектура
Ampere
Характеристики памяти
2GB
Объем памяти
4GB
GDDR6
Тип памяти
GDDR6
64bit
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
64bit
1500MHz
Частота памяти
1750MHz
96.00 GB/s
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
112.0 GB/s
Теоретическая производительность
21.12 GPixel/s
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
47.26 GPixel/s
42.24 GTexel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
94.53 GTexel/s
2.703 TFLOPS
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
12.10 TFLOPS
42.24 GFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
189.1 GFLOPS
2.757
TFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
5.929
TFLOPS
Другое
16
Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
16
1024
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
2048
128 KB (per SM)
Кэш L1
64 KB (per SM)
2MB
Кэш L2
2MB
25W
TDP
45W
1.3
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
3.0
Версия OpenCL
3.0
4.6
OpenGL
4.6
7.5
CUDA
8.6
12 (12_1)
DirectX
12 Ultimate (12_2)
None
Разъемы питания
1x 6-pin
16
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
32
6.6
Шейдерная модель
6.6
Бенчмарки
FP32 (float)
/ TFLOPS
GeForce MX550
2.757
GeForce RTX 2050 Mobile
5.929
+115%
3DMark Time Spy
GeForce MX550
2380
GeForce RTX 2050 Mobile
3430
+44%