AMD Radeon RX 6700 vs NVIDIA GeForce RTX 3070 Mobile

Результат сравнения видеокарт

Ниже приведены результаты сравнения видеокарт AMD Radeon RX 6700 и NVIDIA GeForce RTX 3070 Mobile по ключевым характеристикам производительности, а также энергопотреблению и многому другому.

Преимущества

  • Выше Boost Частота: 2450MHz (2450MHz vs 1560MHz)
  • Больше Объем памяти: 10GB (10GB vs 8GB)
  • Новее Дата выпуска: June 2021 (June 2021 vs January 2021)
  • Выше Пропускная способность: 448.0 GB/s (320.0 GB/s vs 448.0 GB/s)
  • Больше Блоки шейдинга: 5120 (2304 vs 5120)

Общая информация

AMD
Производитель
NVIDIA
June 2021
Дата выпуска
January 2021
Desktop
Платформа
Mobile
Radeon RX 6700
Название модели
GeForce RTX 3070 Mobile
Navi II
Поколение
GeForce 30 Mobile
1941MHz
Базоввая частота
1110MHz
2450MHz
Boost Частота
1560MHz
PCIe 4.0 x16
Интерфейс шины
PCIe 4.0 x16
17,200 million
Транзисторы
17,400 million
36
RT ядра
40
36
Вычислительные юниты
-
-
Tensor ядра
?
Тензорные ядра — это специализированные процессоры, разработанные специально для глубокого обучения, обеспечивающие более высокую производительность обучения и вывода по сравнению с обучением FP32. Они позволяют выполнять быстрые вычисления в таких областях, как компьютерное зрение, обработка естественного языка, распознавание речи, преобразование текста в речь и персонализированные рекомендации. Два наиболее заметных применения тензорных ядер — это DLSS (Deep Learning Super Sampling) и AI Denoiser для снижения шума.
160
144
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
160
TSMC
Производитель
Samsung
7 nm
Размер процесса
8 nm
RDNA 2.0
Архитектура
Ampere

Характеристики памяти

10GB
Объем памяти
8GB
GDDR6
Тип памяти
GDDR6
160bit
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
256bit
2000MHz
Частота памяти
1750MHz
320.0 GB/s
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
448.0 GB/s

Теоретическая производительность

156.8 GPixel/s
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
124.8 GPixel/s
352.8 GTexel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
249.6 GTexel/s
22.58 TFLOPS
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
15.97 TFLOPS
705.6 GFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
249.6 GFLOPS
11.064 TFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
15.651 TFLOPS

Другое

-
Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
40
2304
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
5120
128 KB per Array
Кэш L1
128 KB (per SM)
3MB
Кэш L2
4MB
175W
TDP
115W
1.3
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
2.1
Версия OpenCL
3.0
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
-
CUDA
8.6
1x 8-pin
Разъемы питания
None
6.5
Шейдерная модель
6.6
64
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
80
450W
Требуемый блок питания
-

Бенчмарки

Shadow of the Tomb Raider 2160p / fps
Radeon RX 6700
43
GeForce RTX 3070 Mobile
43
Shadow of the Tomb Raider 1440p / fps
Radeon RX 6700
94 +21%
GeForce RTX 3070 Mobile
78
Shadow of the Tomb Raider 1080p / fps
Radeon RX 6700
161 +52%
GeForce RTX 3070 Mobile
106
Battlefield 5 2160p / fps
Radeon RX 6700
58 +4%
GeForce RTX 3070 Mobile
56
Battlefield 5 1440p / fps
Radeon RX 6700
124 +25%
GeForce RTX 3070 Mobile
99
Battlefield 5 1080p / fps
Radeon RX 6700
172 +33%
GeForce RTX 3070 Mobile
129
GTA 5 2160p / fps
Radeon RX 6700
61
GeForce RTX 3070 Mobile
86 +41%
GTA 5 1440p / fps
Radeon RX 6700
86 +5%
GeForce RTX 3070 Mobile
82
GTA 5 1080p / fps
Radeon RX 6700
142
GeForce RTX 3070 Mobile
153 +8%
FP32 (float) / TFLOPS
Radeon RX 6700
11.064
GeForce RTX 3070 Mobile
15.651 +41%
3DMark Time Spy
Radeon RX 6700
11433 +7%
GeForce RTX 3070 Mobile
10649