AMD Radeon R9 280X vs NVIDIA GeForce GT 1030
Результат сравнения видеокарт
Ниже приведены результаты сравнения видеокарт
AMD Radeon R9 280X
и
NVIDIA GeForce GT 1030
по ключевым характеристикам производительности, а также энергопотреблению и многому другому.
Преимущества
- Больше Объем памяти: 3GB (3GB vs 2GB)
- Выше Пропускная способность: 288.0 GB/s (288.0 GB/s vs 48.06 GB/s)
- Больше Блоки шейдинга: 2048 (2048 vs 384)
- Выше Boost Частота: 1468MHz (1000MHz vs 1468MHz)
- Новее Дата выпуска: May 2017 (October 2013 vs May 2017)
Общая информация
AMD
Производитель
NVIDIA
October 2013
Дата выпуска
May 2017
Desktop
Платформа
Desktop
Radeon R9 280X
Название модели
GeForce GT 1030
Volcanic Islands
Поколение
GeForce 10
850MHz
Базоввая частота
1228MHz
1000MHz
Boost Частота
1468MHz
PCIe 3.0 x16
Интерфейс шины
PCIe 3.0 x4
4,313 million
Транзисторы
1,800 million
32
Вычислительные юниты
-
128
TMU
?
Блоки наложения текстур (TMU) служат компонентами графического процессора, которые способны вращать, масштабировать и искажать двоичные изображения, а затем размещать их в виде текстур на любой плоскости заданной трехмерной модели. Этот процесс называется отображением текстур.
24
TSMC
Производитель
Samsung
28 nm
Размер процесса
14 nm
GCN 1.0
Архитектура
Pascal
Характеристики памяти
3GB
Объем памяти
2GB
GDDR5
Тип памяти
GDDR5
384bit
Шина памяти
?
Ширина шины памяти обозначает количество бит данных, которые видеопамять может передать за один такт. Чем больше ширина шины, тем больший объем данных может быть передан мгновенно, что делает ее одним из важнейших параметров видеопамяти. Пропускная способность памяти рассчитывается как: Пропускная способность памяти = Частота памяти x Ширина шины памяти / 8. Следовательно, если частоты памяти одинаковы, ширина шины памяти будет определять размер пропускной способности памяти.
64bit
1500MHz
Частота памяти
1502MHz
288.0 GB/s
Пропускная способность
?
Пропускная способность памяти — это скорость передачи данных между графическим чипом и видеопамятью. Он измеряется в байтах в секунду, и формула для его расчета: пропускная способность памяти = рабочая частота × ширина шины памяти / 8 бит.
48.06 GB/s
Теоретическая производительность
32.00 GPixel/s
Пиксельный филлрейт
?
Скорость заполнения пикселей — это количество пикселей, которые графический процессор (GPU) может визуализировать в секунду, измеряется в мегапикселях/с (миллион пикселей в секунду) или GPixels/s (миллиард пикселей в секунду). Это наиболее часто используемый показатель для оценки производительности обработки пикселей видеокарты.
23.49 GPixel/s
128.0 GTexel/s
Текстурный филлрейт
?
Скорость заполнения текстуры — это количество элементов карты текстур (текселей), которые графический процессор может сопоставить с пикселями за одну секунду.
35.23 GTexel/s
-
FP16 (half)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности.
17.62 GFLOPS
1024 GFLOPS
FP64 (double)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности, а числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
35.23 GFLOPS
4.014
TFLOPS
FP32 (float)
?
Важным показателем для измерения производительности графического процессора являются возможности вычислений с плавающей запятой. Числа с плавающей запятой одинарной точности (32-битные) используются для обычных задач обработки мультимедиа и графики, а числа с плавающей запятой двойной точности (64-битные) необходимы для научных вычислений, требующих широкого числового диапазона и высокой точности. Числа с плавающей запятой половинной точности (16 бит) используются в таких приложениях, как машинное обучение, где допустима более низкая точность.
1.104
TFLOPS
Другое
-
Потоковый мультипроцессор (SM)
?
Несколько потоковых процессоров (SP) вместе с другими ресурсами образуют потоковый мультипроцессор (SM), который также называется основным ядром графического процессора. Эти дополнительные ресурсы включают в себя такие компоненты, как планировщики деформации, регистры и общую память. SM можно считать сердцем графического процессора, аналогично ядру ЦП, при этом регистры и общая память являются дефицитными ресурсами внутри SM.
3
2048
Блоки шейдинга
?
Самым фундаментальным процессором является потоковый процессор (SP), в котором выполняются определенные инструкции и задачи. Графические процессоры выполняют параллельные вычисления, что означает, что несколько процессоров SP работают одновременно для обработки задач.
384
16 KB (per CU)
Кэш L1
48 KB (per SM)
768KB
Кэш L2
512KB
250W
TDP
30W
1.2
Версия Vulkan
?
Vulkan — это кроссплатформенный графический и вычислительный API от Khronos Group, предлагающий высокую производительность и низкую нагрузку на процессор. Он позволяет разработчикам напрямую управлять графическим процессором, снижает затраты на рендеринг и поддерживает многопоточные и многоядерные процессоры.
1.3
1.2
Версия OpenCL
3.0
4.6
OpenGL
4.6
12 (11_1)
DirectX
12 (12_1)
-
CUDA
6.1
1x 6-pin + 1x 8-pin
Разъемы питания
None
32
ROP
?
Конвейер растровых операций (ROP) в первую очередь отвечает за расчеты освещения и отражений в играх, а также за управление такими эффектами, как сглаживание (AA), высокое разрешение, дым и огонь. Чем более требовательны к сглаживанию и световым эффектам в игре, тем выше требования к производительности для ROP; в противном случае это может привести к резкому падению частоты кадров.
16
5.1
Шейдерная модель
6.4
600W
Требуемый блок питания
200W
Бенчмарки
FP32 (float)
/ TFLOPS
Radeon R9 280X
4.014
+264%
GeForce GT 1030
1.104
3DMark Time Spy
Radeon R9 280X
2394
+117%
GeForce GT 1030
1105
Hashcat
/ H/s
Radeon R9 280X
151963
+185%
GeForce GT 1030
53248