AMD Radeon Vega 8 vs NVIDIA GeForce RTX 4060 Ti 16 GB

Risultato del confronto GPU

Di seguito sono riportati i risultati di un confronto tra le schede video AMD Radeon Vega 8 e NVIDIA GeForce RTX 4060 Ti 16 GB in base alle caratteristiche prestazionali chiave, nonché al consumo energetico e molto altro.

Vantaggi

  • Più alto Boost Clock: 2535MHz (2000MHz vs 2535MHz)
  • Più grandi Dimensione memoria: 16GB (System Shared vs 16GB)
  • Più alto Larghezza di banda: 288.0 GB/s (System Dependent vs 288.0 GB/s)
  • Più Unità di ombreggiatura: 4352 (512 vs 4352)
  • Più nuovo Data di rilascio: May 2023 (January 2021 vs May 2023)

Di base

AMD
Nome dell'etichetta
NVIDIA
January 2021
Data di rilascio
May 2023
Integrated
Piattaforma
Desktop
Radeon Vega 8
Nome del modello
GeForce RTX 4060 Ti 16 GB
Cezanne
Generazione
GeForce 40
300MHz
Clock base
2310MHz
2000MHz
Boost Clock
2535MHz
IGP
Interfaccia bus
PCIe 4.0 x8
9,800 million
Transistor
22,900 million
-
Core RT
34
8
Unità di calcolo
-
-
Core Tensor
?
I Tensor Cores sono unità di elaborazione specializzate progettate specificamente per l'apprendimento profondo. Consentono calcoli rapidi in aree come la visione artificiale, l'elaborazione del linguaggio naturale, il riconoscimento vocale, la conversione da testo a voce e le raccomandazioni personalizzate.
136
32
TMUs
?
Le unità di mappatura texture (TMUs) servono come componenti della GPU, in grado di ruotare, scalare, distorcere immagini binarie e poi posizionarle come texture su qualsiasi piano di un dato modello 3D. Questo processo è chiamato mappatura texture.
136
TSMC
Fonderia
TSMC
7 nm
Dimensione del processo
5 nm
GCN 5.1
Architettura
Ada Lovelace

Specifiche della memoria

System Shared
Dimensione memoria
16GB
System Shared
Tipo di memoria
GDDR6
System Shared
Bus memoria
?
La larghezza del bus di memoria si riferisce al numero di bit di dati che la memoria video può trasferire in un singolo ciclo di clock. Maggiore è la larghezza del bus, maggiore è la quantità di dati che può essere trasmessa istantaneamente. La larghezza del bus di memoria è un parametro cruciale della memoria video. La larghezza di banda della memoria si calcola così: Larghezza di banda della memoria = Frequenza della memoria x Larghezza del bus di memoria / 8.
128bit
SystemShared
Clock memoria
2250MHz
System Dependent
Larghezza di banda
?
La larghezza di banda della memoria si riferisce alla velocità di trasferimento dati tra il chip grafico e la memoria video. Si misura in byte al secondo e la formula per calcolarla è: larghezza di banda della memoria = frequenza di lavoro × larghezza del bus di memoria / 8 bit.
288.0 GB/s

Prestazioni teoriche

16.00 GPixel/s
Tasso di pixel
?
Il tasso di riempimento dei pixel si riferisce al numero di pixel che una unità di elaborazione grafica (GPU) può renderizzare al secondo, misurato in MPixel/s o GPixel/s. È la metrica più comunemente usata per valutare le prestazioni di elaborazione dei pixel di una scheda grafica.
121.7 GPixel/s
64.00 GTexel/s
Tasso di texture
?
Il tasso di riempimento della texture si riferisce al numero di elementi di mappa texture (texel) che una GPU può mappare su pixel in un secondo.
344.8 GTexel/s
4.096 TFLOPS
FP16 (metà)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri in virgola mobile a metà precisione (16 bit) vengono utilizzati per applicazioni come l'apprendimento automatico, dove è accettabile una precisione inferiore.
22.06 TFLOPS
128.0 GFLOPS
FP64 (doppio)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri in virgola mobile a doppia precisione (64 bit) sono richiesti per il calcolo scientifico che richiede un'ampia gamma numerica e un'alta precisione.
344.8 GFLOPS
2.089 TFLOPS
FP32 (virgola mobile)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri a virgola mobile a precisione singola (32 bit) vengono utilizzati per attività comuni di elaborazione grafica e multimediale, mentre i numeri a virgola mobile a precisione doppia (64 bit) sono necessari per il calcolo scientifico che richiede un'ampia gamma numerica e un'elevata precisione. I numeri a virgola mobile a mezza precisione (16 bit) vengono utilizzati per applicazioni come l'apprendimento automatico, dove è accettabile una precisione inferiore.
22.501 TFLOPS

Varie

-
Conteggio SM
?
Più processori di streaming (SP), insieme ad altre risorse, formano un multiprocessore di streaming (SM), che è anche considerato come il nucleo principale di una GPU. Queste risorse aggiuntive includono componenti come i programmi di schedulazione warp, i registri e la memoria condivisa.
34
512
Unità di ombreggiatura
?
L'unità di elaborazione più fondamentale è il processore di streaming (SP), dove vengono eseguite istruzioni e compiti specifici. Le GPU eseguono il calcolo parallelo, il che significa che più SP lavorano contemporaneamente per elaborare i compiti.
4352
-
Cache L1
128 KB (per SM)
-
Cache L2
32MB
45W
TDP
165W
1.2
Versione Vulkan
?
Vulkan è un'API di grafica e calcolo multipiattaforma di Khronos Group, che offre prestazioni elevate e un basso sovraccarico della CPU. Consente agli sviluppatori di controllare direttamente la GPU, riduce il sovraccarico del rendering e supporta processori multi-threading e multi-core.
1.3
2.1
Versione OpenCL
3.0
4.6
OpenGL
4.6
12 (12_1)
DirectX
12 Ultimate (12_2)
-
CUDA
8.9
None
Connettori di alimentazione
1x 16-pin
6.4
Modello Shader
6.7
8
ROPs
?
Il raster operations pipeline (ROPs) si occupa principalmente di gestire i calcoli di illuminazione e riflessione nei giochi, così come gestire effetti come l'anti-aliasing (AA), l'alta risoluzione, il fumo e il fuoco. Più esigenti sono gli effetti di anti-aliasing e illuminazione in un gioco, più alte sono le prestazioni richieste per i ROPs.
48
-
PSU suggerito
450W

Classifiche

FP32 (virgola mobile) / TFLOPS
Radeon Vega 8
2.089
GeForce RTX 4060 Ti 16 GB
22.501 +977%
3DMark Time Spy
Radeon Vega 8
2742
GeForce RTX 4060 Ti 16 GB
13140 +379%