AMD Radeon Vega 8 vs AMD Radeon PRO W7500

Risultato del confronto GPU

Di seguito sono riportati i risultati di un confronto tra le schede video AMD Radeon Vega 8 e AMD Radeon PRO W7500 in base alle caratteristiche prestazionali chiave, nonché al consumo energetico e molto altro.

Vantaggi

  • Più alto Boost Clock: 2000MHz (2000MHz vs 1700MHz)
  • Più grandi Dimensione memoria: 8GB (System Shared vs 8GB)
  • Più alto Larghezza di banda: 172.0 GB/s (System Dependent vs 172.0 GB/s)
  • Più Unità di ombreggiatura: 1792 (512 vs 1792)
  • Più nuovo Data di rilascio: August 2023 (January 2021 vs August 2023)

Di base

AMD
Nome dell'etichetta
AMD
January 2021
Data di rilascio
August 2023
Integrated
Piattaforma
Desktop
Radeon Vega 8
Nome del modello
Radeon PRO W7500
Cezanne
Generazione
Radeon Pro Navi
300MHz
Clock base
1500MHz
2000MHz
Boost Clock
1700MHz
IGP
Interfaccia bus
PCIe 4.0 x8
9,800 million
Transistor
13,300 million
-
Core RT
28
8
Unità di calcolo
28
32
TMUs
?
Le unità di mappatura texture (TMUs) servono come componenti della GPU, in grado di ruotare, scalare, distorcere immagini binarie e poi posizionarle come texture su qualsiasi piano di un dato modello 3D. Questo processo è chiamato mappatura texture.
112
TSMC
Fonderia
TSMC
7 nm
Dimensione del processo
6 nm
GCN 5.1
Architettura
RDNA 3.0

Specifiche della memoria

System Shared
Dimensione memoria
8GB
System Shared
Tipo di memoria
GDDR6
System Shared
Bus memoria
?
La larghezza del bus di memoria si riferisce al numero di bit di dati che la memoria video può trasferire in un singolo ciclo di clock. Maggiore è la larghezza del bus, maggiore è la quantità di dati che può essere trasmessa istantaneamente. La larghezza del bus di memoria è un parametro cruciale della memoria video. La larghezza di banda della memoria si calcola così: Larghezza di banda della memoria = Frequenza della memoria x Larghezza del bus di memoria / 8.
128bit
SystemShared
Clock memoria
1344MHz
System Dependent
Larghezza di banda
?
La larghezza di banda della memoria si riferisce alla velocità di trasferimento dati tra il chip grafico e la memoria video. Si misura in byte al secondo e la formula per calcolarla è: larghezza di banda della memoria = frequenza di lavoro × larghezza del bus di memoria / 8 bit.
172.0 GB/s

Prestazioni teoriche

16.00 GPixel/s
Tasso di pixel
?
Il tasso di riempimento dei pixel si riferisce al numero di pixel che una unità di elaborazione grafica (GPU) può renderizzare al secondo, misurato in MPixel/s o GPixel/s. È la metrica più comunemente usata per valutare le prestazioni di elaborazione dei pixel di una scheda grafica.
108.8 GPixel/s
64.00 GTexel/s
Tasso di texture
?
Il tasso di riempimento della texture si riferisce al numero di elementi di mappa texture (texel) che una GPU può mappare su pixel in un secondo.
190.4 GTexel/s
4.096 TFLOPS
FP16 (metà)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri in virgola mobile a metà precisione (16 bit) vengono utilizzati per applicazioni come l'apprendimento automatico, dove è accettabile una precisione inferiore.
24.37 TFLOPS
128.0 GFLOPS
FP64 (doppio)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri in virgola mobile a doppia precisione (64 bit) sono richiesti per il calcolo scientifico che richiede un'ampia gamma numerica e un'alta precisione.
380.8 GFLOPS
2.089 TFLOPS
FP32 (virgola mobile)
?
Una metrica importante per misurare le prestazioni della GPU è la capacità di calcolo in virgola mobile. I numeri a virgola mobile a precisione singola (32 bit) vengono utilizzati per attività comuni di elaborazione grafica e multimediale, mentre i numeri a virgola mobile a precisione doppia (64 bit) sono necessari per il calcolo scientifico che richiede un'ampia gamma numerica e un'elevata precisione. I numeri a virgola mobile a mezza precisione (16 bit) vengono utilizzati per applicazioni come l'apprendimento automatico, dove è accettabile una precisione inferiore.
11.946 TFLOPS

Varie

512
Unità di ombreggiatura
?
L'unità di elaborazione più fondamentale è il processore di streaming (SP), dove vengono eseguite istruzioni e compiti specifici. Le GPU eseguono il calcolo parallelo, il che significa che più SP lavorano contemporaneamente per elaborare i compiti.
1792
-
Cache L1
128 KB per Array
-
Cache L2
2MB
45W
TDP
70W
1.2
Versione Vulkan
?
Vulkan è un'API di grafica e calcolo multipiattaforma di Khronos Group, che offre prestazioni elevate e un basso sovraccarico della CPU. Consente agli sviluppatori di controllare direttamente la GPU, riduce il sovraccarico del rendering e supporta processori multi-threading e multi-core.
1.3
2.1
Versione OpenCL
2.2
4.6
OpenGL
4.6
12 (12_1)
DirectX
12 Ultimate (12_2)
None
Connettori di alimentazione
None
8
ROPs
?
Il raster operations pipeline (ROPs) si occupa principalmente di gestire i calcoli di illuminazione e riflessione nei giochi, così come gestire effetti come l'anti-aliasing (AA), l'alta risoluzione, il fumo e il fuoco. Più esigenti sono gli effetti di anti-aliasing e illuminazione in un gioco, più alte sono le prestazioni richieste per i ROPs.
64
6.4
Modello Shader
6.7
-
PSU suggerito
250W

Classifiche

FP32 (virgola mobile) / TFLOPS
Radeon Vega 8
2.089
Radeon PRO W7500
11.946 +472%
Blender
Radeon Vega 8
62
Radeon PRO W7500
896 +1345%