NVIDIA GeForce RTX 2050 Mobile vs AMD Radeon RX 7500 XT
GPU Comparison Result
Below are the results of a comparison of NVIDIA GeForce RTX 2050 Mobile and AMD Radeon RX 7500 XT video cards based on key performance characteristics, as well as power consumption and much more.
Advantages
- More Shading Units: 2048 (2048 vs 1024)
- Higher Boost Clock: 2300MHz (1477MHz vs 2300MHz)
- Larger Memory Size: 6GB (4GB vs 6GB)
- Higher Bandwidth: 216.0 GB/s (112.0 GB/s vs 216.0 GB/s)
- Newer Launch Date: January 2023 (December 2021 vs January 2023)
Basic
NVIDIA
Label Name
AMD
December 2021
Launch Date
January 2023
Mobile
Platform
Desktop
GeForce RTX 2050 Mobile
Model Name
Radeon RX 7500 XT
GeForce 20 Mobile
Generation
Navi III
1185MHz
Base Clock
1452MHz
1477MHz
Boost Clock
2300MHz
PCIe 3.0 x8
Bus Interface
PCIe 4.0 x8
Unknown
Transistors
13,300 million
32
RT Cores
16
-
Compute Units
16
64
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
-
64
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
64
Samsung
Foundry
TSMC
8 nm
Process Size
6 nm
Ampere
Architecture
RDNA 3.0
Memory Specifications
4GB
Memory Size
6GB
GDDR6
Memory Type
GDDR6
64bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
96bit
1750MHz
Memory Clock
2250MHz
112.0 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
216.0 GB/s
Theoretical Performance
47.26 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
73.60 GPixel/s
94.53 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
147.2 GTexel/s
12.10 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
18.84 TFLOPS
189.1 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
294.4 GFLOPS
5.929
TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
9.609
TFLOPS
Miscellaneous
16
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
-
2048
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1024
64 KB (per SM)
L1 Cache
128 KB per Array
2MB
L2 Cache
2MB
45W
TDP
100W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
3.0
OpenCL Version
2.2
4.6
OpenGL
4.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
8.6
CUDA
-
1x 6-pin
Power Connectors
1x 6-pin
32
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
6.6
Shader Model
6.7
-
Suggested PSU
300W
Benchmarks
FP32 (float)
/ TFLOPS
GeForce RTX 2050 Mobile
5.929
Radeon RX 7500 XT
9.609
+62%