NVIDIA GeForce GTX 760 vs NVIDIA GeForce GTX 770

GPU Comparison Result

Below are the results of a comparison of NVIDIA GeForce GTX 760 and NVIDIA GeForce GTX 770 video cards based on key performance characteristics, as well as power consumption and much more.

Advantages

  • Newer Launch Date: June 2013 (June 2013 vs May 2013)
  • Higher Boost Clock: 1085MHz (1032MHz vs 1085MHz)
  • Higher Bandwidth: 224.4 GB/s (192.3 GB/s vs 224.4 GB/s)
  • More Shading Units: 1536 (1152 vs 1536)

Basic

NVIDIA
Label Name
NVIDIA
June 2013
Launch Date
May 2013
Desktop
Platform
Desktop
GeForce GTX 760
Model Name
GeForce GTX 770
GeForce 700
Generation
GeForce 700
980MHz
Base Clock
1046MHz
1032MHz
Boost Clock
1085MHz
PCIe 3.0 x16
Bus Interface
PCIe 3.0 x16
3,540 million
Transistors
3,540 million
96
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
128
TSMC
Foundry
TSMC
28 nm
Process Size
28 nm
Kepler
Architecture
Kepler

Memory Specifications

2GB
Memory Size
2GB
GDDR5
Memory Type
GDDR5
256bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
1502MHz
Memory Clock
1753MHz
192.3 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.4 GB/s

Theoretical Performance

24.77 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
34.72 GPixel/s
99.07 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
138.9 GTexel/s
99.07 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
138.9 GFLOPS
2.33 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
3.266 TFLOPS

Miscellaneous

1152
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1536
16 KB (per SMX)
L1 Cache
16 KB (per SMX)
512KB
L2 Cache
512KB
170W
TDP
230W
1.1
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.1
3.0
OpenCL Version
3.0
4.6
OpenGL
4.6
12 (11_0)
DirectX
12 (11_0)
3.0
CUDA
3.0
2x 6-pin
Power Connectors
1x 6-pin + 1x 8-pin
32
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
5.1
Shader Model
5.1
450W
Suggested PSU
550W

Benchmarks

FP32 (float) / TFLOPS
GeForce GTX 760
2.33
GeForce GTX 770
3.266 +40%
3DMark Time Spy
GeForce GTX 760
1705
GeForce GTX 770
2093 +23%
Blender
GeForce GTX 760
151.23
GeForce GTX 770
202 +34%
Vulkan
GeForce GTX 760
14275
GeForce GTX 770
18717 +31%
OpenCL
GeForce GTX 760
13442
GeForce GTX 770
17489 +30%
Hashcat / H/s
GeForce GTX 760
41825
GeForce GTX 770
63227 +51%