Intel Arc A370M vs NVIDIA GeForce RTX 2050 Mobile

GPU Comparison Result

Below are the results of a comparison of Intel Arc A370M and NVIDIA GeForce RTX 2050 Mobile video cards based on key performance characteristics, as well as power consumption and much more.

Advantages

  • Higher Boost Clock: 1550MHz (1550MHz vs 1477MHz)
  • Newer Launch Date: March 2022 (March 2022 vs December 2021)

Basic

Intel
Label Name
NVIDIA
March 2022
Launch Date
December 2021
Mobile
Platform
Mobile
Arc A370M
Model Name
GeForce RTX 2050 Mobile
Alchemist
Generation
GeForce 20 Mobile
300MHz
Base Clock
1185MHz
1550MHz
Boost Clock
1477MHz
PCIe 4.0 x8
Bus Interface
PCIe 3.0 x8
7,200 million
Transistors
Unknown
8
RT Cores
32
-
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
64
64
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
64
TSMC
Foundry
Samsung
6 nm
Process Size
8 nm
Generation 12.7
Architecture
Ampere

Memory Specifications

4GB
Memory Size
4GB
GDDR6
Memory Type
GDDR6
64bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
64bit
1750MHz
Memory Clock
1750MHz
112.0 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
112.0 GB/s

Theoretical Performance

49.60 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
47.26 GPixel/s
99.20 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
94.53 GTexel/s
6.349 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
12.10 TFLOPS
793.6 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
189.1 GFLOPS
3.237 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
5.929 TFLOPS

Miscellaneous

-
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
16
1024
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2048
-
L1 Cache
64 KB (per SM)
4MB
L2 Cache
2MB
35W
TDP
45W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
3.0
OpenCL Version
3.0
4.6
OpenGL
4.6
-
CUDA
8.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
-
Power Connectors
1x 6-pin
32
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
6.6
Shader Model
6.6

Benchmarks

FP32 (float) / TFLOPS
Arc A370M
3.237
GeForce RTX 2050 Mobile
5.929 +83%
3DMark Time Spy
Arc A370M
3489 +2%
GeForce RTX 2050 Mobile
3430
Blender
Arc A370M
380.77
GeForce RTX 2050 Mobile
795 +109%