AMD Radeon RX 6300M vs NVIDIA GeForce RTX 2050 Mobile

GPU Comparison Result

Below are the results of a comparison of AMD Radeon RX 6300M and NVIDIA GeForce RTX 2050 Mobile video cards based on key performance characteristics, as well as power consumption and much more.

Advantages

  • Higher Boost Clock: 2400MHz (2400MHz vs 1477MHz)
  • Newer Launch Date: January 2022 (January 2022 vs December 2021)
  • Larger Memory Size: 4GB (2GB vs 4GB)
  • Higher Bandwidth: 112.0 GB/s (72.00 GB/s vs 112.0 GB/s)
  • More Shading Units: 2048 (768 vs 2048)

Basic

AMD
Label Name
NVIDIA
January 2022
Launch Date
December 2021
Mobile
Platform
Mobile
Radeon RX 6300M
Model Name
GeForce RTX 2050 Mobile
Mobility Radeon
Generation
GeForce 20 Mobile
2000MHz
Base Clock
1185MHz
2400MHz
Boost Clock
1477MHz
PCIe 4.0 x4
Bus Interface
PCIe 3.0 x8
5,400 million
Transistors
Unknown
12
RT Cores
32
12
Compute Units
-
-
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
64
48
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
64
TSMC
Foundry
Samsung
6 nm
Process Size
8 nm
RDNA 2.0
Architecture
Ampere

Memory Specifications

2GB
Memory Size
4GB
GDDR6
Memory Type
GDDR6
32bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
64bit
2250MHz
Memory Clock
1750MHz
72.00 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
112.0 GB/s

Theoretical Performance

76.80 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
47.26 GPixel/s
115.2 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
94.53 GTexel/s
7.373 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
12.10 TFLOPS
230.4 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
189.1 GFLOPS
3.612 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
5.929 TFLOPS

Miscellaneous

-
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
16
768
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
2048
128 KB per Array
L1 Cache
64 KB (per SM)
1024KB
L2 Cache
2MB
35W
TDP
45W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
2.2
OpenCL Version
3.0
4.6
OpenGL
4.6
-
CUDA
8.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Power Connectors
1x 6-pin
32
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
32
6.6
Shader Model
6.6

Benchmarks

FP32 (float) / TFLOPS
Radeon RX 6300M
3.612
GeForce RTX 2050 Mobile
5.929 +64%