NVIDIA RTX A4000H
About GPU
The NVIDIA RTX A4000H GPU is a powerful solution designed for desktop use, offering impressive performance and capabilities. With a base clock speed of 735MHz and a boost clock speed of 1560MHz, this GPU delivers excellent speed and responsiveness, making it well-suited for demanding tasks such as 3D rendering, video editing, and gaming.
One of the standout features of the RTX A4000H is its large 16GB of GDDR6 memory, which provides ample capacity for handling large datasets and complex visuals. The memory clock speed of 1750MHz further enhances the GPU's ability to handle data-intensive workloads, contributing to smooth and efficient performance.
The RTX A4000H is equipped with 6144 shading units and 4MB of L2 cache, allowing for high levels of parallel processing and accelerated rendering. With a TDP of 140W, this GPU strikes a good balance between performance and power efficiency, making it a viable option for a wide range of desktop systems.
In terms of raw computational power, the RTX A4000H offers a theoretical performance of 18.787 TFLOPS, ensuring that it can tackle even the most demanding tasks with ease.
Overall, the NVIDIA RTX A4000H GPU is a compelling choice for professionals and enthusiasts who require robust graphics performance for their work or gaming needs. Its combination of high memory capacity, fast clock speeds, and efficient architecture make it a standout option in the desktop GPU market.
Basic
Label Name
NVIDIA
Platform
Desktop
Launch Date
April 2021
Model Name
RTX A4000H
Generation
Quadro Ampere
Base Clock
735MHz
Boost Clock
1560MHz
Bus Interface
PCIe 4.0 x16
Transistors
17,400 million
RT Cores
48
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
192
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
192
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere
Memory Specifications
Memory Size
16GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1750MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
448.0 GB/s
Theoretical Performance
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
149.8 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
299.5 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
19.17 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
299.5 GFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
18.787
TFLOPS
Miscellaneous
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
48
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
6144
L1 Cache
128 KB (per SM)
L2 Cache
4MB
TDP
140W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
1x 6-pin
Shader Model
6.7
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
96
Suggested PSU
300W
Benchmarks
FP32 (float)
Score
18.787
TFLOPS
Compared to Other GPU
FP32 (float)
/ TFLOPS