NVIDIA GeForce RTX 4060 Mobile vs NVIDIA GeForce RTX 3060 Mobile
GPU-Vergleichsergebnis
Nachfolgend finden Sie die Ergebnisse eines Vergleichs von NVIDIA GeForce RTX 4060 Mobile und NVIDIA GeForce RTX 3060 Mobile Grafikkarten basierend auf wichtigen Leistungsmerkmalen sowie Stromverbrauch und vielem mehr.
Vorteile
- Höher Boost-Takt: 1890MHz (1890MHz vs 1425MHz)
- Größer Speichergröße: 8GB (8GB vs 6GB)
- Neuer Erscheinungsdatum: January 2023 (January 2023 vs January 2021)
- Höher Bandbreite: 336.0 GB/s (256.0 GB/s vs 336.0 GB/s)
- Mehr Shading-Einheiten: 3840 (3072 vs 3840)
Basic
NVIDIA
Markenname
NVIDIA
January 2023
Erscheinungsdatum
January 2021
Mobile
Plattform
Mobile
GeForce RTX 4060 Mobile
Modellname
GeForce RTX 3060 Mobile
GeForce 40 Mobile
Generation
GeForce 30 Mobile
1545MHz
Basis-Takt
900MHz
1890MHz
Boost-Takt
1425MHz
PCIe 4.0 x16
Bus-Schnittstelle
PCIe 4.0 x16
Unknown
Transistoren
12,000 million
24
RT-Kerne
30
96
Tensor-Kerne
?
Tensor-Kerne sind spezialisierte Verarbeitungseinheiten, die speziell für das Deep Learning entwickelt wurden und im Vergleich zum FP32-Training eine höhere Trainings- und Inferenzleistung bieten. Sie ermöglichen schnelle Berechnungen in Bereichen wie Computer Vision, Natural Language Processing, Spracherkennung, Text-zu-Sprache-Konvertierung und personalisierteEmpfehlungen. Die beiden bekanntesten Anwendungen von Tensor-Kernen sind DLSS (Deep Learning Super Sampling) und AI Denoiser zur Rauschreduzierung.
120
96
TMUs
?
Textur-Mapping-Einheiten (TMUs) sind Komponenten der GPU, die in der Lage sind, Binärbilder zu drehen, zu skalieren und zu verzerren und sie dann als Texturen auf jede Ebene eines gegebenen 3D-Modells zu platzieren. Dieser Prozess wird als Textur-Mapping bezeichnet.
120
TSMC
Foundry
Samsung
5 nm
Prozessgröße
8 nm
Ada Lovelace
Architektur
Ampere
Speicherspezifikationen
8GB
Speichergröße
6GB
GDDR6
Speichertyp
GDDR6
128bit
Speicherbus
?
Der Speicherbus bezieht sich auf die Anzahl der Bits, die das Videomemory innerhalb eines einzelnen Taktzyklus übertragen kann. Je größer die Busbreite, desto mehr Daten können gleichzeitig übertragen werden, was sie zu einem der entscheidenden Parameter des Videomemory macht. Die Speicherbandbreite wird wie folgt berechnet: Speicherbandbreite = Speicherfrequenz x Speicherbusbreite / 8. Wenn also die Speicherfrequenzen ähnlich sind, bestimmt die Speicherbusbreite die Größe der Speicherbandbreite.
192bit
2000MHz
Speichertakt
1750MHz
256.0 GB/s
Bandbreite
?
Die Speicherbandbreite bezieht sich auf die Datenübertragungsrate zwischen dem Grafikchip und dem Videomemory. Sie wird in Bytes pro Sekunde gemessen, und die Formel zur Berechnung lautet: Speicherbandbreite = Arbeitsfrequenz × Speicherbusbreite / 8 Bit.
336.0 GB/s
Theoretische Leistung
90.72 GPixel/s
Pixeltakt
?
Die Pixel-Füllrate bezieht sich auf die Anzahl der Pixel, die eine Grafikverarbeitungseinheit (GPU) pro Sekunde rendern kann, gemessen in MPixel/s (Millionen Pixel pro Sekunde) oder GPixel/s (Milliarden Pixel pro Sekunde). Es handelt sich dabei um die am häufigsten verwendete Kennzahl zur Bewertung der Pixelverarbeitungsleistung einer Grafikkarte.
68.40 GPixel/s
181.4 GTexel/s
Texture-Takt
?
Die Textur-Füllrate bezieht sich auf die Anzahl der Textur-Map-Elemente (Texel), die eine GPU in einer Sekunde auf Pixel abbilden kann.
171.0 GTexel/s
11.61 TFLOPS
FP16 (halbe Genauigkeit)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist. Einfach genaue Gleitkommazahlen (32 Bit) werden für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet, während doppelt genaue Gleitkommazahlen (64 Bit) für wissenschaftliches Rechnen erforderlich sind, das einen großen Zahlenbereich und hohe Genauigkeit erfordert.
10.94 TFLOPS
181.4 GFLOPS
FP64 (Doppelte Gleitkommazahl)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenleistung. Doppelt genaue Gleitkommazahlen (64 Bit) sind für wissenschaftliches Rechnen erforderlich, das einen großen Zahlenbereich und hohe Genauigkeit erfordert, während einfach genaue Gleitkommazahlen (32 Bit) für übliche Multimedia- und Grafikverarbeitungsaufgaben verwendet werden. Halbgenaue Gleitkommazahlen (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
171.0 GFLOPS
11.842
TFLOPS
FP32 (float)
?
Eine wichtige Kennzahl zur Messung der GPU-Leistung ist die Gleitkomma-Rechenfähigkeit. Gleitkommazahlen mit einfacher Genauigkeit (32 Bit) werden für allgemeine Multimedia- und Grafikverarbeitungsaufgaben verwendet, während Gleitkommazahlen mit doppelter Genauigkeit (64 Bit) für wissenschaftliche Berechnungen erforderlich sind, die einen großen Zahlenbereich und hohe Genauigkeit erfordern. Gleitkommazahlen mit halber Genauigkeit (16 Bit) werden für Anwendungen wie maschinelles Lernen verwendet, bei denen eine geringere Genauigkeit akzeptabel ist.
11.159
TFLOPS
Verschiedenes
24
SM-Anzahl
?
Mehrere Streaming-Prozessoren (SPs) bilden zusammen mit anderen Ressourcen einen Streaming-Multiprozessor (SM), der auch als Hauptkern einer GPU bezeichnet wird. Zu diesen zusätzlichen Ressourcen gehören Komponenten wie Warp-Scheduler, Register und gemeinsamer Speicher. Der SM kann als Herz der GPU betrachtet werden, ähnlich wie ein CPU-Kern, wobei Register und gemeinsamer Speicher knappe Ressourcen innerhalb des SM sind.
30
3072
Shading-Einheiten
?
Die grundlegendste Verarbeitungseinheit ist der Streaming-Prozessor (SP), in dem spezifische Anweisungen und Aufgaben ausgeführt werden. GPUs führen paralleles Rechnen durch, was bedeutet, dass mehrere SPs gleichzeitig arbeiten, um Aufgaben zu verarbeiten.
3840
128 KB (per SM)
L1-Cache
128 KB (per SM)
32MB
L2-Cache
3MB
115W
TDP (Thermal Design Power)
80W
1.3
Vulkan-Version
?
Vulkan ist eine plattformübergreifende Grafik- und Rechen-API der Khronos Group, die hohe Leistung und geringen CPU-Overhead bietet. Es ermöglicht Entwicklern die direkte Steuerung der GPU, reduziert den Rendering-Overhead und unterstützt Multi-Threading und Multi-Core-Prozessoren.
1.3
3.0
OpenCL-Version
3.0
4.6
OpenGL
4.6
8.9
CUDA
8.6
12 Ultimate (12_2)
DirectX
12 Ultimate (12_2)
None
Stromanschlüsse
None
48
ROPs
?
Die Raster-Operations-Pipeline (ROPs) ist hauptsächlich für die Handhabung von Licht- und Reflexionsberechnungen in Spielen verantwortlich, sowie für die Verwaltung von Effekten wie Kantenglättung (AA), hoher Auflösung, Rauch und Feuer. Je anspruchsvoller die Kantenglättung und Lichteffekte in einem Spiel sind, desto höher sind die Leistungsanforderungen für die ROPs. Andernfalls kann es zu einem starken Einbruch der Bildrate kommen.
48
6.7
Shader-Modell
6.6
Benchmarks
Shadow of the Tomb Raider 2160p
/ fps
GeForce RTX 4060 Mobile
41
+5%
GeForce RTX 3060 Mobile
39
Shadow of the Tomb Raider 1440p
/ fps
GeForce RTX 4060 Mobile
94
+36%
GeForce RTX 3060 Mobile
69
Shadow of the Tomb Raider 1080p
/ fps
GeForce RTX 4060 Mobile
151
+57%
GeForce RTX 3060 Mobile
96
GTA 5 2160p
/ fps
GeForce RTX 4060 Mobile
76
+7%
GeForce RTX 3060 Mobile
71
GTA 5 1440p
/ fps
GeForce RTX 4060 Mobile
76
+1%
GeForce RTX 3060 Mobile
75
GTA 5 1080p
/ fps
GeForce RTX 4060 Mobile
167
+14%
GeForce RTX 3060 Mobile
147
FP32 (float)
/ TFLOPS
GeForce RTX 4060 Mobile
11.842
+6%
GeForce RTX 3060 Mobile
11.159
3DMark Time Spy
GeForce RTX 4060 Mobile
10189
+19%
GeForce RTX 3060 Mobile
8534
Blender
GeForce RTX 4060 Mobile
3569
+40%
GeForce RTX 3060 Mobile
2558
OctaneBench
GeForce RTX 4060 Mobile
350
+28%
GeForce RTX 3060 Mobile
273