Intel Xeon Gold 6230R

Intel Xeon Gold 6230R

About processor

The Intel Xeon Gold 6230R processor is a powerhouse for server platforms, built with the latest Cascade Lake X technology on a 14nm architecture. With a total of 26 cores and 52 threads, this processor is designed to handle the most demanding workloads and multitasking operations with ease. The TDP of 150W ensures efficient power usage while delivering exceptional performance. In terms of real-world performance, the Xeon Gold 6230R is a beast. In Geekbench 6, it scored an impressive 1106 in single-core performance and a staggering 7770 in multi-core performance. This makes it ideal for tasks such as virtualization, data analytics, AI, and high-performance computing. The processor's high core and thread count make it well-suited for multitasking and heavy workloads, while its power efficiency and advanced technology ensure reliable and consistent performance. It also supports advanced security features to help protect sensitive data in server environments. In conclusion, the Intel Xeon Gold 6230R is a top-of-the-line processor that offers exceptional performance, reliability, and efficiency for server applications. Whether you're running complex calculations, virtual machines, or handling large-scale data processing, this processor has the capabilities to meet your needs.

Basic

Label Name
Intel
Platform
Server
Launch Date
January 2020
Model Name
?
The Intel processor number is just one of several factors - along with processor brand, system configurations, and system-level benchmarks - to be considered when choosing the right processor for your computing needs.
6230R
Code Name
Cascade Lake X

CPU Specifications

Total Cores
?
Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).
26
Total Threads
?
Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.
52
Basic Frequency
2.10 GHz
Max Turbo Frequency
?
Max Turbo Frequency is the maximum single-core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Turbo Boost Max Technology 3.0 and Intel® Thermal Velocity Boost. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.
4.00 GHz
Intel Hyper-Threading Technology
?
Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.
Yes
Intel Turbo Boost Max Technology 3.0
?
Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom.
No
Intel Turbo Boost Technology
?
Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.
2.0
CPU Socket
?
The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.
FCLGA3647
Technology
?
Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.
14 nm
TDP
150 W
PCI Express Version
?
PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.
3.0
Number of PCI Express Lanes
?
A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.
48
Intel 64
?
Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.
Yes

Memory Specifications

Memory Type
?
Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.
DDR4-2933
Max Memory Size
?
Max memory size refers to the maximum memory capacity supported by the processor.
1 TB
Memory Channels
?
The number of memory channels refers to the bandwidth operation for real world application.
6
Maximum Memory Speed
2933 MHz
ECC Memory Supported
?
ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.
Yes

Miscellaneous

Intel Deep Learning Boost (Intel DL Boost) on CPU
?
A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.
Yes
Intel Virtualization Technology for Directed I/O (VT-d)
?
Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.
Yes
Intel Virtualization Technology (VT-x)
?
Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.
Yes
Intel Standard Manageability (ISM)
?
Intel® Standard Manageability is the manageability solution for Intel vPro® Essentials platforms and is a subset of Intel® AMT with out-of-band management over Ethernet and Wi-Fi, but no KVM or new life cycle management features.
Intel® SSE4.2 | Intel® AVX | Intel® AVX2 | Intel® AVX-512
Number of AVX-512 FMA Units
2
Enhanced Intel SpeedStep Technology
?
Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.
Yes
Execute Disable Bit
?
Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.
Yes
Cache
?
CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.
35.75 MB
Intel AES New Instructions
?
Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.
Yes
Intel Volume Management Device (VMD)
?
Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.
Yes
Intel VT-x with Extended Page Tables (EPT)
?
Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.
Yes

Benchmarks

Geekbench 6
Single Core Score
1204
Geekbench 6
Multi Core Score
9192
Geekbench 5
Single Core Score
723
Geekbench 5
Multi Core Score
5672
Passmark CPU
Single Core Score
2236
Passmark CPU
Multi Core Score
33724

Compared to Other CPU

Geekbench 6 Single Core
1283 +6.6%
1244 +3.3%
1170 -2.8%
1138 -5.5%
Geekbench 6 Multi Core
10616 +15.5%
9774 +6.3%
8649 -5.9%
8215 -10.6%
Geekbench 5 Single Core
755 +4.4%
738 +2.1%
698 -3.5%
678 -6.2%
Geekbench 5 Multi Core
6200 +9.3%
5932 +4.6%
5376 -5.2%
5095 -10.2%
Passmark CPU Single Core
2292 +2.5%
2261 +1.1%
2205 -1.4%
2178 -2.6%
Passmark CPU Multi Core
39922 +18.4%
36431 +8%
31632 -6.2%
29702 -11.9%