NVIDIA GeForce RTX 3070 6144 SP
About GPU
The NVIDIA GeForce RTX 3070 6144 SP GPU is a powerhouse graphics card that delivers top-notch performance for gaming, content creation, and other graphics-intensive tasks. With a base clock of 1740 MHz and a boost clock of 1770 MHz, this GPU offers lightning-fast speeds and smooth gameplay experiences.
One of the standout features of this GPU is its 8GB of GDDR6 memory, which enables high-resolution textures and smooth frame rates even in the most demanding games. The memory clock of 1750 MHz further enhances its performance, ensuring that it can handle even the most resource-intensive applications with ease.
With 6144 shading units and 4 MB of L2 cache, the GeForce RTX 3070 delivers stunning visuals and realistic lighting effects, making it a top choice for gamers and content creators alike. Additionally, the TDP of 290W ensures that the GPU can deliver consistent performance without overheating or throttling.
Overall, the NVIDIA GeForce RTX 3070 6144 SP GPU is a fantastic option for anyone in need of a high-performance graphics card. Its impressive specs and powerful performance make it a worthy investment for anyone looking to take their gaming or content creation to the next level. Whether you're a hardcore gamer or a professional video editor, this GPU has the horsepower to handle whatever you throw at it.
Basic
Label Name
NVIDIA
Platform
Desktop
Model Name
GeForce RTX 3070 6144 SP
Generation
GeForce 30
Base Clock
1740 MHz
Boost Clock
1770 MHz
Bus Interface
PCIe 4.0 x16
Transistors
17.4 billion
RT Cores
48
Tensor Cores
?
Tensor Cores are specialized processing units designed specifically for deep learning, providing higher training and inference performance compared to FP32 training. They enable rapid computations in areas such as computer vision, natural language processing, speech recognition, text-to-speech conversion, and personalized recommendations. The two most notable applications of Tensor Cores are DLSS (Deep Learning Super Sampling) and AI Denoiser for noise reduction.
192
TMUs
?
Texture Mapping Units (TMUs) serve as components of the GPU, which are capable of rotating, scaling, and distorting binary images, and then placing them as textures onto any plane of a given 3D model. This process is called texture mapping.
192
Foundry
Samsung
Process Size
8 nm
Architecture
Ampere
Memory Specifications
Memory Size
8GB
Memory Type
GDDR6
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
256bit
Memory Clock
1750 MHz
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
448.0GB/s
Theoretical Performance
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
169.9 GPixel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
339.8 GTexel/s
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
21.75 TFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
339.8 GFLOPS
Miscellaneous
SM Count
?
Multiple Streaming Processors (SPs), along with other resources, form a Streaming Multiprocessor (SM), which is also referred to as a GPU's major core. These additional resources include components such as warp schedulers, registers, and shared memory. The SM can be considered the heart of the GPU, similar to a CPU core, with registers and shared memory being scarce resources within the SM.
48
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
6144
L1 Cache
128 KB (per SM)
L2 Cache
4 MB
TDP
290W
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
OpenCL Version
3.0
OpenGL
4.6
DirectX
12 Ultimate (12_2)
CUDA
8.6
Power Connectors
1x 8-pin
Shader Model
6.8
ROPs
?
The Raster Operations Pipeline (ROPs) is primarily responsible for handling lighting and reflection calculations in games, as well as managing effects like anti-aliasing (AA), high resolution, smoke, and fire. The more demanding the anti-aliasing and lighting effects in a game, the higher the performance requirements for the ROPs; otherwise, it may result in a sharp drop in frame rate.
96
Suggested PSU
600 W