Intel Arc A770M vs Intel Iris Xe MAX Graphics

GPU Comparison Result

Below are the results of a comparison of Intel Arc A770M and Intel Iris Xe MAX Graphics video cards based on key performance characteristics, as well as power consumption and much more.

Advantages

  • Larger Memory Size: 16GB (16GB vs 4GB)
  • Higher Bandwidth: 512.0 GB/s (512.0 GB/s vs 68.26 GB/s)
  • More Shading Units: 4096 (4096 vs 768)
  • Newer Launch Date: January 2022 (January 2022 vs October 2020)

Basic

Intel
Label Name
Intel
January 2022
Launch Date
October 2020
Mobile
Platform
Mobile
Arc A770M
Model Name
Iris Xe MAX Graphics
Alchemist
Generation
HD Graphics-M
300MHz
Base Clock
300MHz
1650MHz
Boost Clock
1650MHz
PCIe 4.0 x16
Bus Interface
PCIe 4.0 x8

Memory Specifications

16GB
Memory Size
4GB
GDDR6
Memory Type
LPDDR4X
256bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
2000MHz
Memory Clock
2133MHz
512.0 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
68.26 GB/s

Theoretical Performance

211.2 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
39.60 GPixel/s
422.4 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
79.20 GTexel/s
27.03 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
5.069 TFLOPS
-
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
633.6 GFLOPS
13.25 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
2.585 TFLOPS

Miscellaneous

4096
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
768
16MB
L2 Cache
1024KB
120W
TDP
25W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
3.0
OpenCL Version
3.0

Benchmarks

FP32 (float) / TFLOPS
Arc A770M
13.25 +413%
Iris Xe MAX Graphics
2.585