AMD Radeon RX 7600M vs AMD Radeon RX 6600S

GPU Comparison Result

Below are the results of a comparison of AMD Radeon RX 7600M and AMD Radeon RX 6600S video cards based on key performance characteristics, as well as power consumption and much more.

Advantages

  • Higher Boost Clock: 2410MHz (2410MHz vs 2000MHz)
  • Larger Memory Size: 8GB (8GB vs 4GB)
  • Higher Bandwidth: 256.0 GB/s (256.0 GB/s vs 224.0 GB/s)
  • Newer Launch Date: January 2023 (January 2023 vs January 2022)

Basic

AMD
Label Name
AMD
January 2023
Launch Date
January 2022
Mobile
Platform
Mobile
Radeon RX 7600M
Model Name
Radeon RX 6600S
Navi Mobile
Generation
Mobility Radeon
1500MHz
Base Clock
1700MHz
2410MHz
Boost Clock
2000MHz
PCIe 4.0 x16
Bus Interface
PCIe 4.0 x8

Memory Specifications

8GB
Memory Size
4GB
GDDR6
Memory Type
GDDR6
128bit
Memory Bus
?
The memory bus width refers to the number of bits of data that the video memory can transfer within a single clock cycle. The larger the bus width, the greater the amount of data that can be transmitted instantaneously, making it one of the crucial parameters of video memory. The memory bandwidth is calculated as: Memory Bandwidth = Memory Frequency x Memory Bus Width / 8. Therefore, when the memory frequencies are similar, the memory bus width will determine the size of the memory bandwidth.
128bit
2000MHz
Memory Clock
1750MHz
256.0 GB/s
Bandwidth
?
Memory bandwidth refers to the data transfer rate between the graphics chip and the video memory. It is measured in bytes per second, and the formula to calculate it is: memory bandwidth = working frequency × memory bus width / 8 bits.
224.0 GB/s

Theoretical Performance

154.2 GPixel/s
Pixel Rate
?
Pixel fill rate refers to the number of pixels a graphics processing unit (GPU) can render per second, measured in MPixels/s (million pixels per second) or GPixels/s (billion pixels per second). It is the most commonly used metric to evaluate the pixel processing performance of a graphics card.
128.0 GPixel/s
269.9 GTexel/s
Texture Rate
?
Texture fill rate refers to the number of texture map elements (texels) that a GPU can map to pixels in a single second.
224.0 GTexel/s
34.55 TFLOPS
FP16 (half)
?
An important metric for measuring GPU performance is floating-point computing capability. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy.
14.34 TFLOPS
539.8 GFLOPS
FP64 (double)
?
An important metric for measuring GPU performance is floating-point computing capability. Double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy, while single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
448.0 GFLOPS
17.615 TFLOPS
FP32 (float)
?
An important metric for measuring GPU performance is floating-point computing capability. Single-precision floating-point numbers (32-bit) are used for common multimedia and graphics processing tasks, while double-precision floating-point numbers (64-bit) are required for scientific computing that demands a wide numeric range and high accuracy. Half-precision floating-point numbers (16-bit) are used for applications like machine learning, where lower precision is acceptable.
7.311 TFLOPS

Miscellaneous

1792
Shading Units
?
The most fundamental processing unit is the Streaming Processor (SP), where specific instructions and tasks are executed. GPUs perform parallel computing, which means multiple SPs work simultaneously to process tasks.
1792
128 KB per Array
L1 Cache
128 KB per Array
2MB
L2 Cache
2MB
90W
TDP
80W
1.3
Vulkan Version
?
Vulkan is a cross-platform graphics and compute API by Khronos Group, offering high performance and low CPU overhead. It lets developers control the GPU directly, reduces rendering overhead, and supports multi-threading and multi-core processors.
1.3
2.2
OpenCL Version
2.1

Benchmarks

FP32 (float) / TFLOPS
Radeon RX 7600M
17.615 +141%
Radeon RX 6600S
7.311
Blender
Radeon RX 7600M
1312 +27%
Radeon RX 6600S
1033